

NOAA FISHERIES

Alaska Fisheries Science Center

Northern fur seal foraging – linking biophysical processes and fur seal behavior to demography

Jeremy Sterling

Ecosystem Science Review Juneau, Alaska May 2-6, 2016

Management status

- Listed as depleted under the Marine Mammal Protection Act
 - 1. Eastern Stock population is ~ 622,908 seals (~ 1/3 of of its historical peak)
 - 2. Well below OSP (optimum sustainable population)
 - 3. To be delisted, population needs to double to achieve 60% of historical K
- Determine factors influencing demography as outlined in the Northern Fur Seal Conservation Action Narrative in the 2007 Conservation Plan
 - 1. Compile and evaluate available habitat-use data
 - 2. Compile and evaluate existing physical environmental data
 - 3. Select appropriate environmental indices
 - 4. Quantify environmental effect on behavior and productivity
 - 5. Ecosystem modeling
 - 6. Conduct oceanographic and fishery surveys based on pelagic fur seal habitat use

Objective

- Identify factors influencing northern fur seal demography (Eastern Stock)
 - 1. Pup production (~1950-2014)
 - 2. Lander's estimates of male pup survival to age 2 (1950-1970)
 - 3. Current AEP northern fur seal demography (2010-2015)
- Our hypotheses focus on bottom up processes in both summer and winter
 - 1. Summer foraging and pup provisioning
 - 2. Winter migration

Northern fur seal demography

Objective

- Identify factors influencing northern fur seal demography
 - 1. Pup production (~1950-2014)
 - 2. Lander's estimates of male pup survival to age 2 (1950-1970)
 - 3. Current AEP northern fur seal demography (2010-2015)
- Our hypotheses focus on bottom up processes in both summer and winter
 - 1. Summer foraging and pup provisioning
 - 2. Winter migration

Annual Cycle

Status of Ecosystem Data – TOR4

- Archived in a SQL database
 - Telemetry
 - 2. Diet
 - 3. Demography
 - 4. Blood and disease sampling
- Recent and future publications, historical data
 - 1. Data released with publications under the guidance of NOAA's plan for Public Access to Research Results

Strategies to obtain and manage ecosystem data – TOR 4

- Looking back to inform future study design and hypotheses (1880-2015)
 - Data rescue
 - Roger Gentry's behavioral observation archive (1973-1992)
 - Mike Goebel's PhD thesis (1995-1996)
 - Jason Baker's Pup migration study (1996-1997)
 - Telemetry Alaska Ecosystem Program has satellite tagged 816 northern fur seals (1992-2015)
 - Adult males and females, juveniles, pups
 - At all Eastern Stock locations
 - Half in the winter, half in the summer
 - 3. Saildrone survey of fur seal foraging hotspots in the Bering Sea
 - Autonomous oceanographic and acoustic sampling of fur seal prey fields
 - Bottom trawl, mid-water survey, and BASIS survey

Strategies to obtain and manage ecosystem data – TOR 4

Status of ecosystem modeling – TOR 5

Integrated ecosystem-level analyses – TOR 5

- Migration, diet, and oceanography of adult females (Ream et al. 2005)
- Dispersal patterns of pups and climate (Lea et al. 2009)
- Subsurface thermal structure and the influence on adult female dive behavior (Kuhn et al. 2010)
- Local depletion and foraging patterns of Bogoslof adult females (Kuhn et al. 2014)
- Adult male and female migration patterns and the influence of the thermocline, storms, eddies, LME, and light (Sterling et al. 2014)
- Adult female migration in the California Current foraging patterns explained by Seaglider observations (Pelland et al. 2014)

Integrated ecosystem-level analyses – TOR 5

- Fur seal foraging and pup provisioning responses to basin dynamics, storms, pollock stock structure, distribution and abundance
 - Benefit from Bering Sea Project results and integrate with fur seal foraging
- FEAST
 - 1. Energetics adult females
 - 2. Diet
- Saildrone Project 2016

Fur Seal Diet – Energetics

August, September, October pollock length frequencies

August, September, October pollock energy in kilojoules

1996 Enema Results

n = 64 seals and 1,986 fish

Enema prey energy content - $Total = 22,498 \ kj$

Diet – pollock age structure by sample type

All spew samples vs 1995 & 1996 enema samples

Spew pollock length frequency

Diet – spatial

Pup provisioning – 2 Studies (Goebel & COFFS)

Pup Growth

Mom behavior and pup growth

Male & Female Pup Growth

Eddy variability

1996 2006 Eddies

Shelf foraging – diving

Shelf foraging – cold vs. warm

Storms

Storms

Trip range vs trip duration

Trip Duration Legend

- basin
- shelf
- unknown habitat
- basin fit 95% CI basin shelf fit
- 95%CI shelf
- windspeed

FEAST – unpublished fur seal energetics data

Cumulative analyses – TORR 5

- Identify both summer and winter indices to explain current and past demography
 - 1. Numbers of pollock from stock assessment (summer)
 - Eddy variability (summer and winter)
 - 3. Winter storms and mesoscale currents (winter)
- Use statistical relationships and model coefficients for inputs into climate change projections

Pup growth and linkages to pollock

Male pup growth & M/F pup weights

Linear model fitted to '63 & '84 est. growth from pup weights & '95, '96, '05, '06 Pribilof pup growth from study animals

Pup growth and time in eddies

Proportion of basin time in eddies and pup growth

Female pups included in 2005 & 2006 - no difference in basin M/F pup growth

Potential links to productivity

Winter Migration

- For Eastern Pacific Stock, migration begins Oct-Nov, ends May-June
- Individuals disperse widely throughout North Pacific
- Different groups face different pressures
- Location estimates, dive data analyzed for 135 pups, 105 adult females, 15 adult males
- Compared to remote sensing, reanalysis, autonomous instruments, animal-borne sensors

- Migratory habitat is segregated by age, sex
- Adult females: North American Coast (~2/3) and transition zone chlorophyll front (~1/3)
- Adult males: wide longitude range, some remain in Bering Sea, but almost never NA Coast
- Pups: overlap with both in 1st winter, but mostly adult males

- As a consequence, different groups must face different environmental conditions
- Adult males, many pups: frequent high winds, deep surface mixed layer (ML)
- Most females: shallower ML depth, fewer stormy days, upwelling, eddy generation

- Subset of females traveling to Gulf of Alaska, California Current
- Use of habitat around coastal capes (esp. Cape Blanco), energetic coastal transition zone
- Some statistical evidence for preferential use of eddies in long tracks

- Females entering the CC dove proportionally more during daylight
- Depth of these daylight dives showed correspondence to the MLD

 In pelagic sampling, mass, length increases in adult females, immatures of both sexes began in late April/early May

- Pregnant females
- Non-pregnant females
- of Immature males
- ♀ Immature females
- Changes in daylight diving show similar timing

- Males wintering in central NP exhibited similar behavior
- Implication that upper-ocean stratification affects the depth of NFS prey fields during daylight
- Recall males winter where the MLD is deeper (100-125 m vs. 20-75 m)

"We conclude that adult male NFS winter in the northern NP and Bering Sea because they **can**...Females pursue a different strategy because they **must**." [Sterling et al., 2014]

Dispersal and Migratory Movement

Winter storms

- Comparison of "naivelymodeled" movement direction to wind direction (6-hrly)
- Wind speed 1: distribution of movement bearings more concentrated downwind, and to right
- Physically consistent with surface drift (but too downwind) – implies behavioral component (or sampling...)

Inclusion of ecosystem data into living marine resource management advice – TOR 6

- Provide fur demography results to the Ecosystem Considerations Chapter
- Work closely with the Alaska Regional Office and communicate research results
 - Annual meeting
 - Michael Williams
- Implement studies listed in Conservation Action
 Narrative of the 2007 Conservation Plan for the Eastern
 Pacific Stock of Northern Fur Seals

Peer-review of ecosystem-related science program and products – TOR 7

 ~ 85 publications peer-reviewed publications since 2000

Communication to managers, partners, stakeholders and the public – TOR 8

- Annual presentations at conferences
 - 1. Alaska Marine Science Symposium
 - Marine Mammal Conference
 - 3. Ocean Sciences
 - 4. CLIOTOP Climate Impacts on Oceanic Top Predators
 - 5. Bio-Logging
 - 6. Conservation Biology
- Meetings with the Alaska Regional Office
- Partnership with the Seattle Aquarium

